Атомный ледокол. Самый крупный и самый мощный ледокол в мире. Атомный ледокол «Ленин»

20.06.2022 Саморазвитие

Россия обладает единственным в мире атомным ледокольным флотом, призванным на основе применения передовых ядерных достижений решать задачи обеспечения национального присутствия в Арктике. С его появлением началось настоящее освоение Крайнего Севера.

Основными направлениями деятельности Росатомфлота (предприятие Госкорпорации «Росатом») являются: ледокольное обеспечение проводки судов в акватории Северного морского пути (СМП) в замерзающие порты РФ; обеспечение проведения высокоширотных научно-исследовательских экспедиций; обеспечение аварийно-спасательных операций во льдах на акватории СМП и неарктических замерзающих морей. Кроме того, компания выполняет техническое обслуживание и проведение ремонтных работ общесудового и специального назначения как для собственных нужд, так и для сторонних судовладельцев; участвует в выполнении работ по экологической реабилитации Северо-Западного региона России; а также осуществляет туристические круизы на Северный полюс, острова и архипелаги Центральной Арктики. В силу особенностей двигательных установок одна из технических задач - обеспечение безопасного обращения с ядерными материалами и радиоактивными отходами.

Северный морской путь (СМП) - судоходный маршрут, главная морская коммуникация в российской Арктике. Проходит вдоль северных берегов России по морям Северного Ледовитого океана (Баренцово, Карское, Лаптевых, Восточно-Сибирское, Чукотское и Берингово). СМП соединяет европейские и дальневосточные порты России, а также устья судоходных сибирских рек в единую транспортную систему. Длина этой транспортной артериии составляет 5600 км от пролива Карские Ворота до Бухты Провидения.

В 2008 году Федеральное государственное унитарное предприятие «Атомфлот» вошло в состав Государственной корпорации по атомной энергии «Росатом» на основании Указа Президента Российской Федерации «О мерах по созданию Государственной корпорации по атомной энергии «Росатом» (№ 369 от 20 марта 2008 года). С 28 августа 2008 года ему переданы суда с ядерной энергетической установкой и суда атомного технологического обслуживания.

В состав атомного ледокольного флота в настоящее время входят: два атомных ледокола с двухреакторной ядерной энергетической установкой мощностью 75 тыс. л.с. («Ямал», «50 лет Победы») и два ледокола с однореакторной установкой мощностью около 50 тыс. л.с. («Таймыр», «Вайгач»). Их дополняет атомный контейнеровоз «Севморпуть» (мощность реакторной установки - 40 тыс. л.с.). Кроме того, Росатомфлот оперирует тремя судами технологического обслуживания и судном-контейнеровозом «Россита». В его ведении находятся также суда портового флота, предназначенные для обслуживания акватории порта Сабетта: буксиры ледового класса «Пур» и «Тамбей»; ледокольные буксиры «Юрибей» и «Надым»; а также портовый ледокол «Обь».

История отечественного атомного ледокольного флота берет свой отсчет 3 декабря 1959 года. В этот день был принят в эксплуатацию первый в мире атомный ледокол «Ленин». Только с появлением атомного ледокольного флота в 70-е годы XX века Северный морской путь начал обретать очертания национальной транспортной артерии в Арктике. Ввод в эксплуатацию атомного ледокола «Арктика» (1975 г.) открыл круглогодичную навигацию в западном секторе Арктики. На этом этапе развития Севморпути ключевую роль сыграло становление Норильского промышленного района и появление на трассе круглогодичного порта Дудинка. Затем были построены ледоколы «Сибирь», «Россия», «Советский Союз», «Таймыр», «Вайгач», «Ямал», «50 лет Победы». Их сооружение и эксплуатация на десятилетия предопределили технологические преимущества нашей страны в атомном судостроении.

Сегодня основная работа Росатомфлота связана с обеспечением безопасности мореплавания и стабильной навигации, в том числе и транзитной, по Северному морскому пути. Транспортировка углеводородной и прочей продукции на рынки Азии и Европы по трассе СМП может служить реальной альтернативой существующим транспортным связям между странами Атлантического и Тихоокеанского бассейнов через Суэцкий и Панамский каналы. Она обеспечивает выигрыш во времени: например, расстояние от порта Мурманск до портов Японии через Северный морской путь составляет около 6 тыс. миль, а через Суэцкий канал – более 12 тыс. миль, соответственно, длительность транзита составляет, в зависимости от метеоусловий и ледовой обстановки, ориентировочно 18 и 37 дней.

Во многом благодаря атомному ледокольному флоту на трассе СМП фиксируется ощутимый грузопоток. В 2015 году по СМП было перевезено около 4 млн тонн грузов. Таким образом, объем перевозок увеличился в 2,7 раз по сравнению с 1998 годом, когда перевозки достигли своего минимума (1,46 млн тонн). Постепенно проводки становятся значимее, возникает больше работы с конкретными, ключевыми заказчиками и проектами, которые предстоит обслуживать вплоть до 2040 года. В 2016 году объем перевозок грузов по трассам Северного морского пути составил более 7,3 млн тонн, что на 35% больше, чем в 2015 году. В 2017 году под проводкой атомных ледоколов в акватории Северного морского пути проведено 492 судна общей валовой вместимостью 7 175 704 тонны (для сравнения, в 2016 - 410 судов общей валовой вместимостью 5 288 284 тонны).

Росатомфлот обеспечивает работы по изучению гидрометеорологического режима морей и минерально-сырьевых ресурсов арктического шельфа, прилегающего к северному побережью РФ. Основные заказчики: ОАО «Государственный научно-исследовательский навигационно-гидрографический институт»; ФГБУ «Арктический и антарктический научно- исследовательский институт», ОАО «Севморнефтегеофизика», ОАО «Арктикморнефтегазразведка», ОАО «Морская арктическая геологоразведочная экспедиция». Атомоходы «Росатомфлота» участвуют в обеспечении экспедиций на дрейфующей полярной станции «Северный полюс».

Пройдемся теперь по внутренним помещениям ледокола,за исключением рубки.
Пост получился большой,громоздкий и представляет собой в большей степени компиляцию всякой информации:-((



Я понимаю,что это все является масштабным повторением огромного количества фотографий людей посетивших на экскурсиях корабль,тем более,что водят по одним и тем же местам.Но мне было интересно самому в этом разобраться.

Это наш гид по атомоходу:

Речь шла о создании такого судна, которое очень долго может плавать без захода в порты за топливом.
Ученые подсчитали, что атомный ледокол будет расходовать в сутки 45 граммов ядерного горючего - столько, сколько уместится в спичечной коробке. Вот почему атомоход, практически имея неограниченный район плавания, сможет побывать за один рейс и в Арктике, и у берегов Антарктиды. Для судна с атомной энергетической установкой дальность расстояния - не препятствие.

Первоначально нас собрали в этом зале для кратенького введения в экскурсию и разделили на две группы.

Адмиралтейцы имели немалый опыт по ремонту и строительству ледоколов. Еще в 1928 г. они капитально отремонтировали "дедушку ледокольного флота" - знаменитый "Ермак".
Строительство ледоколов и ледокольно-транспортных судов на заводе было связано с новым этапом в развитии советского судостроения - применением электросварки вместо клепки. Коллектив завода был одним из инициаторов этого новшества. Новый метод успешно испытали на строительстве ледоколов типа "Седов". Ледоколы "Охотск", "Мурман", "Океан", при постройке которых широко применялась электросварка, показали прекрасные эксплуатационные качества; их корпус оказался более прочным по сравнению с другими судами.

Перед Великой Отечественной войной на заводе построили крупное ледокольно-транспортное судно "Семен Дежнев", которое сразу же после ходовых испытаний направилось в Арктику для вывода зазимовавших там караванов. Вслед за "Семеном Дежневым" было спущено на воду ледокольно-транспортное судно "Леваневский". После войны завод построил еще один ледокол и несколько самоходных паромов ледокольного типа.
Над проектом трудился большой научный коллектив, возглавляемый выдающимся советским физиком академиком А. П. Александровым. Под его руководством работали такие крупные специалисты как И. И. Африкантов, А. И. Брандаус, Г. А. Гладков, Б. Я. Гнесин, В. И. Неганов, Н. С. Хлопкин, А. Н. Стефанович и Другие.

Поднимаемся на этаж выше

Размеры атомохода были выбраны с учетом требований эксплуатации ледоколов на Севере и обеспечения его наилучших мореходных качеств: длина ледокола 134 м, ширина 27,6 м, мощность на валу 44 000 л. с., водоизмещение 16000 т, скорость хода 18 узлов на чистой воде и 2 узла во льдах толщиной более 2 м.

Длинные коридоры

Запроектированная мощность турбоэлектрической установки не имеет себе равных. Атомный ледокол по своей мощности в два раза превосходит американский ледокол "Глетчер", считавшийся крупнейшим в мире.
Особое внимание при проектировании корпуса судна было обращено на форму носовой оконечности, от которой во многом зависят ледокольные качества судна. Выбранные для атомохода обводы по сравнению с существующими ледоколами позволяют увеличить давление на лед. Кормовая оконечность спроектирована так, что обеспечивает проходимость во льдах при заднем ходе и надежную защиту винтов и руля от ударов льда.

Столовая:
А камбуз? Это полностью электрифицированный комбинат со своей хлебопекарней,горячая пища на электрическом лифте подается из кухни в столовые.

В практике наблюдалось, что ледоколы иногда застревали во льдах не только носом или кормой, но и бортами. Чтобы избежать этого, было решено устроить на атомоходе специальные системы балластных цистерн. Если из цистерны одного борта перекачать воду в цистерну другого борта, то судно, раскачиваясь из стороны в сторону, будет ломать и раздвигать лед бортами. Такая же система цистерн установлена в носу и в корме. А если ледокол не сломает лед с ходу и нос его застрянет? Тогда можно перекачать воду из кормовой дифферентной цистерны в носовую. Давление на лед увеличится, он сломается, и ледокол выйдет из ледового плена.
Чтобы обеспечить непотопляемость такого большого судна, в случае если обшивка будет повреждена, корпус решили подразделить на отсеки одиннадцатью главными поперечными водонепроницаемыми переборками. При расчете атомного ледокола конструкторы обеспечили непотопляемость судна при затоплении двух наибольших отсеков.

Коллектив строителей полярного гиганта возглавил талантливый инженер В. И. Червяков.

В июле 1956 г. была заложена первая секция корпуса атомного ледокола.
Для разбивки на плазе теоретического чертежа корпуса требовалась огромная площадь - около 2500 квадратных метров. Вместо этого разбивку произвели на особом щите с помощью специального инструмента. Это позволило сократить площадь для разметки. Затем изготавливались чертежи-шаблоны, которые фотографировались на фотопластинки. Проекционный аппарат, в который помещали негатив, воспроизводил на металле световой контур детали. Фотооптический метод разметки позволил снизить трудоемкость плазовых и разметочных работ на 40%.

Попадаем в машинный отсек

Атомный ледокол как наиболее мощное судно во всем ледокольном флоте предназначен для борьбы со льдами в самых тяжелых условиях; поэтому его корпус должен быть особенно прочным. Высокую прочность корпуса решено было обеспечить применением стали новой марки. Эта сталь обладает повышенной ударной вязкостью. Она хорошо сваривается и имеет большую сопротивляемость распространению трещин при низких температурах.

Конструкция корпуса атомохода, система его набора также отличалась от других ледоколов. Днище, борта, внутренние палубы, платформы и верхняя палуба в оконечностях набирались по поперечной системе набора, а верхняя палуба в средней части ледокола - по продольной системе.
Корпус высотой в добрый пятиэтажный дом состоял из секций весом до 75 т. Таких крупных секций насчитывалось около двухсот.

Сборку и сварку таких секций вел участок предварительной сборки корпусного цеха.

Интересно отметить, что на атомоходе имеются две электростанции, способные обеспечить энергией город с 300-тысячным населением. На судне не нужны ни машинисты, ни кочегары: вся работа электростанций автоматизирована.
Следует сказать о новейших электродвигателях гребных винтов. Это- уникальные машины, изготовленные в СССР впервые, специально для атомохода. Цифры говорят за себя: вес среднего двигателя 185 т, мощность почти 20000 л. с. Двигатель пришлось доставить на ледокол в разобранном виде, по частям. Погрузка двигателя на судно представляла большие трудности.

Здесь тоже любят чистоту

С участка предварительной сборки готовые секции поступали прямо на стапель. Сборщики и проверщики без промедления устанавливали их на место.
При изготовлении узлов для первых опытно-штатных секций выяснилось, что стальные листы, из которых они должны быть изготовлены, весят 7 т, а имевшиеся на заготовительном участке подъемные краны обладали грузоподъемностью только до 6 т.
Прессы тоже были недостаточной мощности.

Следует рассказать еще об одном поучительном примере тесного содружества рабочих, инженеров и ученых.
По утвержденной технологии конструкции из нержавеющей стали сваривались вручную. Было проведено более 200 экспериментов; наконец, режимы сварки были отработаны. Пять сварщиков-автоматчиков заменили 20 сварщиков-ручников, которых перевели работать на другие участки.

Был, например, такой случай. Из-за очень больших габаритов нельзя было доставить по железной дороге на завод фор- и ахтерштевень - основные конструкции носа и кормы судна. Массивные, тяжелые, весом 30 и 80 г, - они не помещались ни на каких железнодорожных платформах. Инженеры и рабочие решили изготовить штевни непосредственно на заводе, сварив их отдельные части.

Чтобы представить сложность сборки и сварки монтажных стыков этих штевней, достаточно сказать, что минимальная толщина свариваемых частей достигала 150 мм. Сварка форштевня продолжалась 15 суток в 3 смены.

Пока на стапеле воздвигался корпус, в различных цехах завода изготавливались и монтировались детали, трубопроводы, приборы. Многие из них поступали с других предприятий. Главные турбогенераторы строились на Харьковском электромеханическом заводе, гребные электродвигатели - на ленинградском заводе "Электросила" имени С. М. Кирова. Такие электродвигатели создавались в СССР впервые.
В цехах Кировского завода собирались паровые турбины.

Использование новых материалов потребовало изменения многих установившихся технологических процессов. На атомоходе монтировались трубопроводы, которые соединялись раньше путем спайки.
В содружестве со специалистами сварочного бюро завода работники монтажного цеха разработали и внедрили электродуговую сварку труб.

Для атомохода потребовалось несколько тысяч труб различной длины и диаметра. Специалисты подсчитали, что если трубы вытянуть в одну линию, их длина составит 75 километров.

Наконец подоспело время завершения стапельных работ.
Перед спуском возникала то одна трудность, то другая.
Так, нелегким делом оказалась установка тяжелого пера руля. Поставить его на место обычным способом не позволяла сложная конструкция кормовой оконечности атомохода. Кроме того, к моменту установки огромной детали верхнюю палубу уже закрыли. В этих условиях рисковать было нельзя. Решили провести "генеральную репетицию" - поставили сначала не настоящий баллер, а его "двойник" - деревянный макет таких же размеров. "Репетиция" удалась, расчеты подтвердились. Вскоре многотонная деталь была быстро заведена на место.

Спуск ледокола на воду был уже не за горами. Большой спусковой вес судна (11 тысяч тонн) затруднял проектирование спускового устройства, хотя специалисты занимались этим устройством почти с момента закладки первых секций на стапеле.

По расчетам проектной организации, для осуществления спуска ледокола "Ленин" на воду требовалось удлинить подводную часть спусковых дорожек и углубить дно за котлованом стапеля.
Группа работников конструкторского бюро завода и корпусного цеха, разработала более совершенное спусковое устройство по сравнению с первоначальным проектом.

Впервые в практике отечественного судостроения было применено сферическое деревянное поворотное устройство и целый ряд других новых конструктивных решений.
Для уменьшения спускового веса, обеспечения большей устойчивости при спуске на воду и торможения судна, сошедшего со стапеля на воду, под корму и нос завели специальные понтоны.
Корпус ледокола был освобожден от строительных лесов. Окруженный портальными кранами, сверкая свежей краской, он был готов отправиться в свой первый короткий путь - на водную гладь Невы.

Идем дальше

Спускаемся

. . . ПЭЖ. Непосвященному человеку эти три буквы ничего не говорят. ПЭЖ - пост энергетики и живучести - мозг управления ледоколом. Отсюда с помощью приборов-автоматов инженеры-операторы - люди новой на флоте профессии - могут на расстоянии управлять работой парогенераторной установки. Отсюда поддерживается необходимый режим работы "сердца" атомохода - реакторов.

Опытные моряки, много лет плавающие на судах различных типов, удивляются: специалисты ПЭЖ поверх обычной морской формы носят белоснежные халаты.

Пост энергетики и живучести, а также ходовая рубка и каюты экипажа расположены в центральной надстройке.

А теперь дальше по истории:

5 декабря 1957 г. С утра непрерывно моросил дождь, временами падал мокрый снег. С залива дул резкий, порывистый ветер. Но люди словно не замечали хмурой ленинградской погоды. Задолго до спуска ледокола площадки вокруг стапеля заполнились людьми. Многие поднялись на строившийся по соседству танкер.

Ровно в полдень атомоход "Ленин" встал на якорь в том самом месте, где в памятную ночь 25 октября 1917 г. стояла "Аврора" - легендарный корабль Октябрьской революции.

Строительство атомохода вступило в новый период -началась его достройка на плаву.

Атомная энергетическая установка - важнейший участок ледокола. Над конструированием реактора трудились виднейшие ученые. Каждый из трех реакторов по своей мощности почти в 3,5 раза превосходит реактор первой в мире атомной электростанции Академии Наук СССР.

ОК-150 «Ленин» (до 1966г.)
Номинальная мощность реактора, ВМт 3х90
Номинальная паро-производительность, т/ч 3х120
Мощность на винтах, л/с 44 000

Компоновка всех установок - блочная. Каждый блок включает в себя реактор водо-водяного типа (т.е. вода является и теплоносителем, и замедлителем нейтронов), четыре циркуляционных насоса и четыре парогенератора, компенсаторы объема, ионообменный фильтр с холодильником и другое оборудование.

Реактор, насосы и парогенераторы имеют отдельные корпуса и соединены друг с другом короткими патрубками типа «труба в трубе». Все оборудование расположено вертикально в кессонах бака железоводной защиты и закрыто малогабаритными блоками защиты, что обеспечивает легкую доступность при ремонтных работах.

Ядерный реактор- это техническая установка, в которой осуществляется управляемая цепная реакция деления ядер тяжелых элементов с освобождением ядерной энергии. Реактор состоит из активной зоны и отражателя. Реактор водо-водяного типа - вода в нем является и замедлителем быстрых нейтронов и охлаждающей и теплообменной средой Активная зона содержит ядерное топливо в защитном покрытии (тепловыделяющие элементы - ТВЭЛы) и замедлитель. ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками ТВС.

ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками (ТВС). Активная зона реактора представляет собой совокупность активных частей свежих тепловыделяющих сборок (СТВС), которые в свою очередь состоят из тепловыделяющих элементов (ТВЭЛ). В реактор помещаются 241 СТВС. Ресурс современной активной зоны (2,1- 2,3 млн. МВт час.) обеспечивает энергетические потребности судна с ЯЭУ в течение 5-6 лет. После того, как энергоресурс активной зоны исчерпан, проводится перезарядка реактора.

Корпус реактора с эллиптическим днищем изготовлен из низколегированной теплостойкой стали с антикоррозийной наплавкой на внутренних поверхностях.

Принцип действия АППУ
Тепловая схема ППУ атомного судна состоит из 4-х контуров.

Через активную зону реактора прокачивается теплоноситель I контура (вода высокой степени очистки). Вода нагревается до 317 градусов, но не превращается в пар, поскольку находится под давлением. Из реактора теплоноситель 1 контура поступает в парогенератор, омывая трубы, внутри которых протекает вода II контура, превращающаяся в перегретый пар. Далее теплоноситель I контура циркуляционным насосом снова подается в реактор.

Из парогенератора перегретый пар (теплоноситель II контура) поступает на главные турбины. Параметры пара перед турбиной: давление - 30 кгс/см2 (2,9 МПа), температура - 300 °С. Затем пар конденсируется, вода проходит систему ионообменной очистки и снова поступает в парогенератор.

III контур предназначен для охлаждения оборудования АППУ, в качестве теплоносителя используется вода высокой чистоты (дистиллят). Теплоноситель III контура имеет незначительную радиоактивность.

IV контур служит для охлаждения воды в системе III контура, в качестве теплоносителя используется морская вода. Также IV контур используется для охлаждения пара II контура при разводке и расхолаживании установки.

АППУ выполнена и размещена на судне таким образом, чтобы обеспечить защиту экипажа и населения от облучения, а окружающую среду - от загрязнения радиоактивными веществами в пределах допустимых безопасных норм как при нормальной эксплуатации, так и при авариях установки и судна за счет. С этой целью на возможных путях выхода радиоактивных веществ созданы четыре защитных барьера между ядерным топливом и окружающей средой:

первый - оболочки топливных элементов активной зоны реактора;

второй - прочные стенки оборудования и трубопроводов первого контура;

третий - защитная оболочка реакторной установки;

четвертый - защитное ограждение, границами которого являются продольные и поперечные переборки, второе дно и настил верхней палубы в районе реакторного отсека.

Каждый хотел почуствовать себя немножко героем:-)))

В 1966 году было установлено два ок-900 вместо трех ок-150

ОК-900 “Ленин”
Номинальная мощность реактора, ВМт 2x159
Номинальная паро-производительность, т/ч 2x220
Мощность на винтах, л/с 44000

Помещение перед реакторным отсеком

Окна в реакторный отсек

В феврале 1965 г. произошла авария во время плановых ремонтных работ на реакторе №2 атомного ледокола "Ленин". В результате ошибки операторов активная зона на некоторое время была оставлена без воды, что вызвало частичное повреждение примерно 60% тепловыделяющих сборок.

При поканальной перегрузке удалось выгрузить из активной зоны лишь 94 из них, остальные 125 оказались неизвлекаемыми. Эта часть была выгружена вместе с экранной сборкой и помещена в специальный контейнер, который был заполнен твердеющей смесью на основе футурола и затем хранился в береговых условиях около 2 лет.

В августе 1967 г. реакторный отсек с ядерной энергетической установкой ОК-150 и собственными герметичными переборками был затоплен непосредственно с борта ледокола "Ленин" через днище в мелководном заливе Цивольки в северной части архипелага Новая Земля на глубине 40-50 м.

Перед затоплением из реакторов было выгружено ядерное топливо, а их первые контуры промыты, осушены и герметизированы. По данным ЦКБ "Айсберг", реакторы перед затоплением были заполнены твердеющей смесью на основе футурола.

Контейнер со 125 отработавшими тепловыделяющими сборками, заполненный футуролом, был перенесен с берега, размещен внутри специального понтона и затоплен. К моменту аварии судовая ядерная энергетическая установка проработала около 25.000 часов.

После этого ок-150 и были заменены на ок-900
Еще раз о принципах работы:
Как действует атомная энергетическая установка ледокола?
В реакторе в особом порядке помещаются стержни урана. Система урановых стержней пронизывается роем нейтронов, своего рода "запалов", вызывающих распад атомов урана с выделением огромного количества тепловой энергии. Стремительное движение нейтронов укрощается замедлителем. Мириады управляемых атомных взрывов, вызванных потоком нейтронов, происходят в толще урановых стержней. В результате образуется так называемая цепная реакция.
Чб фотографии не мои

Особенность атомных реакторов ледокола состоит в том, что в качестве замедлителя нейтронов применен не графит, как на первой советской атомной электростанции, а дистиллированная вода. Урановые стержни, помещенные в реактор, окружены чистейшей водой (дважды дистиллированной). Если ею наполнить до горлышка бутылку, то абсолютно нельзя будет заметить, налита в бутылку вода или нет: настолько прозрачна вода!
В реакторе вода нагревается выше температуры плавления свинца - более 300 градусов. Вода при этой температуре не закипает потому, что находится под давлением в 100 атмосфер.

Вода, находящаяся в реакторе, радиоактивна. С помощью насосов ее прогоняют через специальный аппарат-парогенератор, где она своим теплом превращает в пар уже нерадиоактивную воду. Пар поступает в турбину, вращающую генератор постоянного тока. Генератор питает током гребные электродвигатели. Отработавший пар направляется в конденсатор, где снова превращается в воду, которая насосом опять нагнетается в парогенератор. Таким образом,в системе сложнейших механизмов происходит своеобразный круговорот воды.
Ч-б фотографии взяты мною из интернета

Реакторы установлены в специальные металлические барабаны, вваренные в бак из нержавеющей стали. Сверху реакторы закрыты крышками, под которыми расположены различные приспособления для автоматического подъема и перемещения урановых стержней. Всю работу реактора контролируют приборы, а при необходимости в действие вступают "механические руки"-манипуляторы, которыми можно управлять издали, находясь за пределами отсека.

В любое время реактор можно осмотреть с помощью телевизора.
Все, что представляет опасность своей радиоактивностью, тщательно изолировано и расположено в специальном отсеке.
Система дренажей отводит опасные жидкости в особую цистерну. Имеется также система и для улавливания воздуха со следами радиоактивности. Воздушный поток из центрального отсека выбрасывается через грот-мачту на высоту 20 м.
Во всех уголках судна можно увидеть специальные приборы-дозиметры, готовые в любой момент известить о повышенной радиоактивности. Кроме того, каждый член экипажа снабжен индивидуальным дозиметром карманного типа. Безопасная эксплуатация ледокола обеспечена полностью.
Конструкторы атомохода предусмотрели всевозможные случайности. Если выйдет из строя один реактор, то его заменит другой. Одну и ту же работу на судне могут выполнить несколько групп одинаковых механизмов.
Таков основной принцип работы всей системы атомной энергетической установки.
В отсеке, где помещаются реакторы, имеется огромное количество труб сложных конфигураций и больших размеров. Трубы необходимо было соединять не как обычно, при помощи фланцев, а сваривать встык с точностью до одного миллиметра.

Одновременно с монтажом атомных реакторов быстрым темпом устанавливались главные механизмы машинного отделения. Здесь монтировались паровые турбины, вращающие генераторы,
на ледоколе; только одних электродвигателей различной мощности на атомоходе более пятисот!

Коридор перед медпунктом

Пока шел монтаж энергетических систем, инженеры работали над тем, как лучше и быстрее смонтировать и ввести в строй систему управления судовыми механизмами.
Все управление сложным хозяйством ледокола осуществляется автоматически, непосредственно из ходовой рубки. Отсюда капитан может изменить режим работы гребных двигателей.

Собственно медпункт:Медицинские кабинеты - терапевтический, зубоврачебный рентгеновский, физиотерапевтический, операционная? процедур: юя а также лаборатория и аптека - оборудованы новейшей лечебно-профилактической аппаратурой.

Работы, связанные со сборкой и установкой надстройки судна, Предстояла нелегкая задача: собрать огромную надстройку, весившую около 750 т. В цехе были построены для ледокола также катер с водометным движителем, грот- и фокмачты.
Собранные в цехе четыре блока надстройки были доставлены на ледокол и здесь установлены плавучим краном.

На ледоколе предстояло выполнить огромный объем изоляционных работ. Площадь изоляции составляла около 30000 м2. Для изоляции помещений применялись новые материалы. Ежемесячно предъявлялось для приемки по 100-120 помещений.

Швартовные испытания - третий по счету (после стапельного периода и достройки на плаву) этап сооружения каждого судна.

До запуска парогенераторной установки ледокола пар должен был подаваться с берега. Устройство паропровода осложнялось отсутствием специальных гибких шлангов большого сечения. Применить паропровод из обычных металлических труб, намертво закрепленных, не представлялось возможным. Тогда по предложению группы новаторов применили особое шарнирное устройство, обеспечивавшее надежную подачу пара по паро-проводу на борт атомохода.

Первыми были запущены и испытаны пожарные электронасосы, а потом и вся пожарная система. Затем, начались испытания вспомогательной котельной установки.
Двигатель заработал. Дрогнули стрелки приборов. Минута, пять, десять. . . Двигатель работает отлично! А через некоторое время монтажники приступили к регулировке приборов, контролирующих температуру воды и масла.

При испытании вспомогательных турбогенераторов и дизель-генераторов понадобились специальные устройства, позволяющие загружать два параллельно работающих турбогенератора.
Как же проходило испытание турбогенераторов?
Основная трудность заключалась в том, что регуляторы напряжения в ходе работы потребовалось заменить новыми, более совершенными, обеспечивающими автоматическое поддерживание напряжения даже в условиях большой перегрузки.
Швартовные испытания продолжались. В январе 1959 г. турбогенераторы со всеми обслуживающими их механизмами и автоматами были налажены и проверены. Одновременно с испытанием вспомогательных турбогенераторов прошли испытания электронасосов, вентиляционной системы и другого оборудования.
Пока испытывались механизмы, полным ходом проводились и другие работы.

Успешно выполняя свои обязательства, адмиралтейцы в апреле закончили испытания всех главных турбогенераторов и гребных электродвигателей. Результаты испытаний оказались отличными. Подтвердились все расчетные данные, сделанные учеными, конструкторами, проектировщиками. Первый этап испытаний атомохода был закончен. И закончен Успешно!

В апреле 1959 г.
В дело вступили монтажники трюмного отделения.

Первенец советского атомного флота ледокол "Ленин" -судно, прекрасно оборудованное всеми средствами современной радиосвязи, локационными установками, новейшим навигационным оборудованием. На ледоколе установлены два радиолокатора - ближнего и дальнего действия. Первый предназначен для решения оперативных навигационных задач, второй - для наблюдения за окружающей обстановкой и вертолетом. Кроме того, он должен дублировать локатор ближнего действия в условиях снегопада или дождя.

Аппаратура, размещенная в носовой и кормовой радиорубках, обеспечит надежную связь с берегом, с другими судами и с самолетами. Внутрисудовая связь осуществляется автоматической телефонной станцией на 100 номеров, отдельными телефонами в различных помещениях, а также мощной общесудовой радиотрансляционной сетью.
Работы по монтажу и регулировке средств связи вели специальные бригады монтажников.
Ответственную работу провели электромонтажники по вводу в действие электрорадиоаппаратуры и различных приборов в ходовой рубке.

Атомоход сможет долго плавать без захода в порты. Значит очень важно, где и как будет жить экипаж. Вот почему при создании проекта ледокола особое внимание было уделено жилищно-бытовым условиям команды.

Далее жилые комнаты

. .. Длинные светлые коридоры. Вдоль них расположены матросские каюты, в основном, одноместные, реже - на двух человек. Днем одно из спальных мест убирается в нишу, другое превращается в диван. В каюте, против дивана, - письменный стол и вращающееся кресло. Над столом - часы и полка для книг. Рядом - шкафы для одежды и личных вещей.
В небольшом входном тамбуре находится еще один шкаф - специально для верхней одежды. Над небольшим фаянсовым умывальником укреплено зеркало. Горячая и холодная вода в кранах - круглые сутки. Словом, уютная современная малогабаритная квартира.

Во всех помещениях люминесцентное освещение. Электропроводка скрыта под зашивкой, ее не видно. Стеклянные экраны молочного цвета закрывают лампы дневного света от резких прямых лучей. У каждого спального места небольшой светильник, дающий мягкий розовый свет. После трудового дня, придя к себе в уютную каюту, моряк сможет прекрасно отдохнуть, почитать, послушать радио, музыку...

Есть на ледоколе и бытовые мастерские -сапожная и портновская; имеются парикмахерская, механическая прачечная бани душевые.
Возвращаемся к центральной лестнице

Поднимаемся к каюте капитана

Более полутора тысяч шкафов, кресел, диванов, полочек заняли свои места в каютах и служебных помещениях. Правда, все это изготовляли не только деревообделочники Адмиралтейского завода, но и рабочие мебельной фабрики № 3, завода имени А. Жданова, фабрики "Интурист". Адмиралтейцы же сделали 60 отдельных гарнитуров мебели, а также различные платяные шкафы, койки, столы, подвесные шкафчики и тумбочки - красивую добротную мебель.

А теперь начнем с истории...

Атомный ледокол «Арктика» вошел в историю как первый надводный корабль, достигший точки Северного полюса. Атомоход «Арктика» (c 1982 года по 1986 год носил название «Леонид Брежнев») является головным кораблем серии проекта 10520. Закладка судна состоялась 3 июля 1971 года на Балтийском заводе в Ленинграде. В создании ледокола принимали участие более 400 объединений и предприятий, научно-исследовательских и проектно-конструкторских организаций, в том числе Опытное конструкторское бюро машиностроения им. И. И. Африкантова и Научно-исследовательский институт атомной энергии им. Курчатова.

Ледокол был спущен на воду в декабре 1972 года, а в апреле 1975-го судно ввели в эксплуатацию.

Атомоход «Арктика» был предназначен для проводки судов в Северном Ледовитом океане с выполнением различных видов ледокольных работ. Длина судна составила 148 метров, ширина - 30 метров, высота борта - около 17 метров. Мощность атомной паропроизводящей установки превышала 55 мегаватт. Благодаря своим техническим показателям атомоход мог проламывать лед толщиной 5 метров, а в чистой воде развивать скорость до 18 узлов.

Первый поход ледокола «Арктика» к Северному полюсу состоялся в 1977 году. Это был масштабный экспериментальный проект, в рамках которого ученые должны были не только достигнуть географической точки Северного полюса, но и провести ряд исследований и наблюдений, а также проверить возможности «Арктики» и устойчивость судна при постоянном столкновении со льдом. Участниками экспедиции стали более 200 человек.

9 августа 1977 года атомоход вышел из порта Мурманска, взяв курс к архипелагу Новая Земля. В море Лаптевых ледокол повернул на север.

И вот 17 августа 1977 года в 4 часа утра по московскому времени атомный ледокол, преодолев мощный ледяной покров Центрального полярного бассейна, впервые в мире достиг в активном плавании географической точки Северного полюса. За 7 суток 8 часов атомоход преодолел 2528 миль. Исполнилась вековая мечта моряков и полярных исследователей многих поколений. Экипаж и участники экспедиции отметили это событие торжественной церемонией поднятия Государственного флага СССР на десятиметровую стальную мачту, установленную на льду. За 15 часов, которые атомоход провел на вершине Земли, ученые выполнили комплекс исследований и наблюдений. Перед уходом с полюса моряки спустили в воды Северного Ледовитого океана памятную металлическую плиту с изображением Государственного герба СССР и с надписью «СССР. 60 лет Октября, а/л «Арктика», широта 90°-N, 1977 г.».

Этот ледокол имеет высокие борта, четыре палубы и две платформы, бак и пятиярусную надстройку, а в качестве движителей используются три четырехлопастных гребных винта фиксированного шага. Атомная паропроизводительная установка размещена в специальном отсеке в средней части ледокола. Корпус ледокола сделан из высокопрочной лигированной стали. В местах, подверженных наибольшему воздействию ледовых нагрузок, корпус усилен ледовым поясом. На ледоколе имеются дифферентная и креновая системы. Буксирные операции обеспечивает кормовая электрическая буксирная лебедка. Для ведения ледовой разведки на ледоколе базируется вертолет. Контроль и управление техническими средствами энергетической установки ведутся автоматически, без постоянной вахты в машинных отделениях, помещениях гребных электродвигателей, электростанциях и у распределительных щитов.

Контроль за работой и управление энергетической установкой осуществляются из центрального поста управления, дополнительное управление гребными электродвигателями выведено в ходовую рубку и кормовой пост. Ходовая рубка - центр управления судном. На атомоходе она расположена на верхнем этаже надстройки, откуда открывается больший обзор. Ходовая рубка вытянута поперек судна - от борта до борта метров на 25, ширина ее - около 5 метров. На передней и боковых стенках почти сплошь располагаются большие прямоугольные иллюминаторы. Внутри рубки только самое необходимое. Вблизи бортов и посередине располагаются три одинаковых пульта, на которых находятся ручки управления движением судна, индикаторы работы трех винтов ледокола и положения руля, курсоуказатели и другие датчики, а также кнопки заполнения и осушения балластных цистерн и огромная тифонная кнопка для подачи звукового сигнала. Вблизи пульта управления левого борта располагается штурманский стол, у центрального - рулевой штурвал, у пульта правого борта - гидрологический стол; около штурманского и гидрологического столов установлены тумбы радиолокаторов кругового обзора.


В начале июня 1975 атомоход провел по Северному морскому пути на восток дизель-электрический ледокол "Адмирал Макаров". В октябре 1976 года вырвал из ледового плена ледокол "Ермак" с сухогрузом "Капитан Мышевский", а также ледокол "Ленинград" с транспортом "Челюскин". Капитан «Арктики» назвал те дни "звездным часом" нового атомохода.

«Арктика» была выведена из эксплуатации в 2008 году.

31 июля 2012 года был исключен из Регистровой книги судов атомный ледокол «Арктика» - первый корабль дошедший до Северного полюса.

По информации озвученной представителями ФГУП “Росатомфлот” прессе, полная стоимость утилизации а/л "Арктика" оценивается 1,3-2 миллиарда рублей, с выделением средств по федеральной целевой программе. Недавно шла широкая кампания по убеждению руководства в отказе от утилизации и возможности модернизации этого ледокола.

А теперь подходим ближе к теме нашего поста.


В ноябре 2013 года на том же Балтийском заводе в Санкт-Петербурге состоялась церемония закладки головного атомного ледокола проекта 22220. В честь своего предшественника атомоход получил название «Арктика». Универсальный двухосадочный атомный ледокол ЛК-60Я станет самым крупным и мощным в мире.

Согласно проекту, длина судна составит более 173 метров, ширина - 34 метра, осадка по конструктивной ватерлинии - 10,5 метров, водоизмещение - 33,54 тыс. тонн. Он станет самым большим и самым мощным (60 МВт) атомным ледоколом в мире. Атомоход будет оснащён двухреакторной энергетической установкой с основным источником пара от реакторной установки РИТМ-200 мощностью 175 МВт.


16 июня на Балтийском заводе состоялся спуск на воду головного атомного ледокола «Арктика» проекта 22220», — говорится в сообщении предприятия, которое цитирует РИА Новости.

Таким образом, конструкторы прошли один из самых важных этапов в строительстве корабля. "Арктика" станет головным судном проекта 22220 и даст начало группе атомных ледоколов, необходимых для освоения Арктики и укрепления присутствия России в этом регионе.

Сначала настоятель Николо-Богоявленского Морского собора провел крещение атомного ледокола. Затем спикер Совета Федерации Валентина Матвиенко, следуя традициям кораблестроителей, разбила бутылку шампанского о корпус атомохода.

"Трудно переоценить то, что сделано нашими учеными, конструкторами, корабелами. Возникает чувство гордости за нашу страну, людей, которые создали такой корабль", — сказала Матвиенко. Она напомнила, что Россия — единственная страна, обладающая собственным атомным ледокольным флотом, который позволит активно выполнять проекты в Арктике.

"Мы выходим на качественно новый уровень освоения этого богатейшего региона", — подчеркнула она.

"Семь футов под килем тебе, великая "Арктика"!" — добавила спикер Совфеда.

В свою очередь, полпред президента по Северо-Западному Федеральному округу Владимир Булавин отметил, что Россия строит новые корабли, несмотря на сложную экономическую ситуацию.

"Если хотите, это наш ответ вызовам и угрозам современности", — сказал Булавин.

Генеральный директор госкорпорации "Росатом" Сергей Кириенко, в свою очередь, назвал спуск нового ледокола на воду большой победой и конструкторов, и коллектива Балтийского завода. По словам Кириенко, "Арктика" открывает "принципиально новые возможности и в области обеспечения обороноспособности нашей страны, и решении экономических задач".

Суда проекта 22220 смогут проводить караваны судов в арктических условиях, пробивая лед толщиной до трех метров. Новые корабли будут обеспечивать проводку судов, перевозящих углеводородное сырье с месторождений Ямальского и Гыданского полуостровов, шельфа Карского моря на рынки стран Азиатско-Тихоокеанского региона. Двухосадочная конструкция позволяет использовать судно как в арктических водах, так и в устьях полярных рек.

По контракту с ФГУП "Атомфлот", Балтийский завод построит три атомных ледокола проекта 22220. 26 мая прошлого года был заложен первый серийный ледокол этого проекта "Сибирь". Осенью нынешнего года планируется начать строительство второго атомохода "Урал".

Контракт на строительство головного атомного ледокола проекта 22220 между ФГУП "Атомфлот" и БЗС был подписан в августе 2012 года. Его стоимость составляет 37 млрд рублей. Контракт на строительство двух серийных атомных ледоколов проекта 22220 был заключен между БЗС и госкорпорацией "Росатом" в мае 2014 года, стоимость контракта составила 84,4 млрд рублей.

источники

Тип ледокола - атомный с турбоэлектрической установкой, четырьмя палубами, двумя платформами, пятиярусной средней надстройкой и двумя мачтами.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЛЕДОКОЛА

  • Длина наибольшая-150 м
  • Ширина наибольшая-30 м
  • Высота корпуса, м-17, 2
  • Осадка, м-11,0
  • Водоизмещение полное-23000 т
  • Толщина корпуса-от 32мм до 48мм по ледовому поясу
  • Скорость во льду, -2,25м-при скорости 2 узла
  • Скорость в чистой воде, узлов-20,8
  • Скорость во льду-от 2 до 20,8 узлов
  • Мощность главной установки-75000 л.с.

Ледокол обладает хорошей управляемостью и маневренностью, имеет плавную качку.

Непотопляемость ледокола удовлетворяет требованиям Правил Регистра при затоплении двух любых отсеков. Корпус ледокола разделен 8 переборками на 9 водонепроницаемых отсеков. По всей длине помещений энергетической установки (ЭУ) установлены продольные водонепроницаемые переборки, образующие второй борт. Отдельные наиболее важные помещения ледокола выделены в самостоятельные водонепроницаемые контуры.

Корпус ледокола выполнен из специальных легированных сталей, для защиты корпуса от коррозии наружная поверхность подводной части покрыта специальной краской "Инерта-160".

Противопожарная защита ледокола выполнена в соответствии с Правилами Регистра и обеспечивается конструктивными мероприятиями по разделению ледокола на четыре вертикальные зоны, а также применением негорючих и трудносгораемых материалов, установкой автоматической пожарной сигнализации, оборудованием комплекса противопожарных систем - водяной, химической, пенотушения и необходимого противопожарного имущества.

Помещения ледокола, относящиеся к категории взрывоопасных (хранилища авиатоплива, ангар, пост выдачи топлива, аккумуляторные, помещения зарядных преобразователей, электрогазосварочных работ) оборудованы взрывобезопасной электроарматурой, системой пожарной сигнализации, средствами пожаротушения и вентиляцией.

Для удовлетворения требований по защите окружающей среды на ледоколе установлены

  • установка для сжигания судовых отходов СП-50 производительностью 50 кг/ч по мусору и 50 кг/ч по нефтеотходам;
  • пять автоматизированных установок для очистки и обеззараживания сточных вод типа ЭОС-5 производительностью по 5 куб.м/сутки и шесть автоматизированных установок типа ЭОС-15 производительностью 15 куб.м/сутки в системе сточных вод;
  • два автоматизированных сепаратора отстойного типа и два сепаратора трюмных вод с предвключенными механическими фильтрами в осушительной системе.

В качестве спасательных средств на ледоколе используются две закрытые спасательные пластмассовые моторные шлюпки и надувные спасательные плоты ПСН-10МК, имеется также рабочий буксирный катер "Орлан". Имеется комплекс систем и устройств, включая ангар, обеспечивающий эксплуатацию вертолета.

Для размещения штатного экипажа ледокола предусмотрены 155 кают, в том числе: 11 блок-кают для старшего комсостава, 123 одноместных кают, 17 двухместных кают и 4 шестиместных кают, всего на 189 человек. Кроме того, для питания, отдыха и проведения досуга экипажа предусмотрены столовая на 84 чел., кают-компания на 88-90 чел., клуб на 108 чел. и три салона для отдыха.

Обитаемость экипажа обеспечивается системами кондиционирования воздуха, пресной и забортной воды, вентиляции, сточно-фановой, рефрижерации.

На ледоколе установлены новейшие средства радиосвязи и электрорадионавигации: спутниковые радиотелеграфная и радиотелеграфнотелефонная установки средних, коротких, промежуточных и ультракоротких волн, станция коллективного приема телевидения "Экран-М1", комплекс телевещательной аппаратуры "Глобус-4", РЛС, средство автоматической радиолокационной прокладки, гирокомпас, радиопеленгатор, эхолот, электрический лаг, переносные шлюпочные радиостанции и др. приборы связи.

Ядерная энергетическая установка

Ядерная энергетическая установка (ЯЭУ) атомного судна состоит из одной или двух автономных атомных паро-производящих установок (АППУ), паротурбинной (ПТУ) и гребной электрической установок (ГЭУ), двух судовых электростанций, вспомогательных механизмов, обслуживающих систем, судовых устройств и оборудования.

Типы АППУ

С 1959 года на атомных судах эксплуатировались 5 типов атомных паропроизводящих установок: ОК-150, ОК-900, ОК-900А,КЛТ-40 и КЛТ-40М.

Типы АППУ, эксплуатируемые на атомных судах

Тип АППУ,
название судна

ОК-150
«Ленин»
(до 1966г.)

ОК-900
«Ленин»

ОК-900А
«Арктика», «Сибирь»,
«Россия» ,«Сов.Союз»,
«Ямал», «50-лет Победы»

КЛТ-40
«Севморпуть»

КЛТ-40М
«Таймыр» «Вайгач»

Номинальная мощность
реактора, ВМт

Номинальная
паро-производительность, т/ч

Мощность на винтах, л/с


Устройство

Компоновка всех установок - блочная. Каждый блок включает в себя реактор водо-водяного типа (т.е. вода является и теплоносителем, и замедлителем нейтронов), четыре циркуляционных насоса и четыре парогенератора, компенсаторы объема, ионообменный фильтр с холодильником и другое оборудование. Реактор, насосы и парогенераторы имеют отдельные корпуса и соединены друг с другом короткими патрубками типа «труба в трубе». Все оборудование расположено вертикально в кессонах бака железоводной защиты и закрыто малогабаритными блоками защиты, что обеспечивает легкую доступность при ремонтных работах.

Реактор

Ядерный реактор - это техническая установка, в которой осуществляется управляемая цепная реакция деления ядер тяжелых элементов с освобождением ядерной энергии. Реактор состоит из активной зоны и отражателя. Активная зона содержит ядерное топливо в защитном покрытии (тепловыделяющие элементы - ТВЭЛы) и замедлитель. ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками (ТВС). Активная зона реактора состоит из 241 ТВС.

Корпус реактора с эллиптическим днищем изготовлен из низколегированной теплостойкой стали с антикоррозийной наплавкой на внутренних поверхностях.

Принцип действия АППУ

Тепловая схема ППУ атомного судна состоит из 4-х контуров.

Через активную зону реактора прокачивается теплоноситель I контура (вода высокой степени очистки). Вода нагревается до 317 градусов, но не превращается в пар, поскольку находится под давлением. Из реактора теплоноситель 1 контура поступает в парогенератор, омывая трубы, внутри которых протекает вода II контура, превращающаяся в перегретый пар. Далее теплоноситель I контура циркуляционным насосом снова подается в реактор.

Из парогенератора перегретый пар (теплоноситель II контура) поступает на главные турбины. Параметры пара перед турбиной: давление - 30 кгс/см2 (2,9 МПа), температура - 300 °С. Затем пар конденсируется, вода проходит систему ионообменной очистки и снова поступает в парогенератор.

III контур предназначен для охлаждения оборудования АППУ, в качестве теплоносителя используется вода высокой чистоты (дистиллят). Теплоноситель III контура имеет незначительную радиоактивность.

IV контур служит для охлаждения воды в системе III контура, в качестве теплоносителя используется морская вода. Также IV контур используется для охлаждения пара II контура при разводке и расхолаживании установки.

Безопасность

АППУ выполнена и размещена на судне таким образом, чтобы обеспечить защиту экипажа и населения от облучения, а окружающую среду - от загрязнения радиоактивными веществами в пределах допустимых безопасных норм как при нормальной эксплуатации, так и при авариях установки и судна за счет. С этой целью на возможных путях выхода радиоактивных веществ созданы четыре защитных барьера между ядерным топливом и окружающей средой:

первый - оболочки топливных элементов активной зоны реактора;

второй - прочные стенки оборудования и трубопроводов первого контура;

третий - защитная оболочка реакторной установки;

четвертый - защитное ограждение, границами которого являются продольные и поперечные переборки, второе дно и настил верхней палубы в районе реакторного отсека.

Безопасность АППУ обеспечена устройствами и системами нормальной эксплуатации и системами безопасности, предназначенными для надежного выключения реактора, отвода тепла от активной зоны и ограничения последствий возможных аварий.

В декабре 1957 года в Ленинграде был спущен на воду первый в мире надводный корабль с атомной силовой установкой. Эта замечательная весть незадолго до 42-й годовщины Великого Октября облетела весь мир.

Зарубежные газеты пестрели заголовками: «Русские ввели в строй атомоход», «Полярный колосс Советов - на Неве», «Победа на мирном фронте использования атомной энергии одержана Советским Союзом»…
1. Решение о строительстве первого в мире атомного ледокола было принято на заседании Совета Министров СССР 20 ноября 1953 года. Новое судно было необходимо для развития навигации по Северному морскому пути. Обычные дизельные ледоколы имели очень большой расход топлива, что снижало их эффективность, в то время как атомный ледокол мог находиться в плавании фактически неограниченно долгий срок.
2. В строительстве первого в мире атомного ледокола были задействованы около 300 предприятий и научно-исследовательских институтов Советского Союза. Строительство ледокола велось под открытым небом, поскольку для строительства судна такого масштаба не подходил ни один из существующих цехов. Несмотря на это, от закладки судна на ленинградском судостроительном заводе им. А. Марти до спуска его на воду прошло менее полутора лет – с 25 августа 1956 года по 5 декабря 1957 года.


Строительство атомного ледокола Ленин.
3. Проект первого в мире атомного ледокола, получившего имя «Ленин», оказался совершенно уникальным в плане открытости – во время постройки и ходовых испытаний на нем побывали, в частности, премьер-министр Великобритании Гарольд Макмиллан и вице-президент США Ричард Никсон.
4. Атомный ледокол «Ленин» обладал не только ядерной силовой установкой, но и передовым дизайном, несвойственным советским кораблям того времени – на борту находились кинозал, музыкальный и курительный салоны, сауна, библиотека, а каюты экипажа были рассчитаны на 1-2 человек. Интерьер судна был отделан карельской березой и кавказским орехом.

Атомный ледокол «Ленин» сходит со стапелей.
5. Спуск на воду первого атомного ледокола перепугал страны НАТО и… руководство Ленинграда. Когда судно покинуло судостроительный завод, власти города потребовали гарантий того, что на «Ленине» не произойдет атомный взрыв. Во время перехода из Ленинграда в Мурманск «Ленина» сопровождали военные корабли НАТО, проводившие анализ радиационного фона вокруг судна. Опасения оказались напрасны – за все годы эксплуатации ледокола от радиации не пострадал ни один из членов его экипажа.
6. Официально в состав советского флота атомный ледокол «Ленин» был зачислен 3 декабря 1959 года. Первым капитаном первого в мире атомного ледокола был назначен Павел Акимович Пономарев. Интересно, что ранее Пономарев был капитаном ледокола «Ермак» - первого в мире ледокола арктического класса.


7. В 1961 году ледокол «Ленин» осуществил первую в истории высадку дрейфующей научно-исследовательской станции с борта судна. Станция «Северный полюс-10» была открыта 17 октября 1961 года и проработала до 29 апреля 1964 года. С того момента высадка полярных экспедиций с борта ледокола стала общепринятой практикой.
8. 4 ноября 1961 года капитаном ледокола «Ленин» стал Борис Макарович Соколов, который не покидал свой пост на протяжении почти 30 лет, вплоть до вывода судна из состава флота в 1990 году. В 1981 году Борису Соколову было присвоено звание Героя Социалистического Труда.


9. После введения в строй атомного ледокола «Ленин» сроки навигации в западном районе Арктики были увеличены с трех до 11 месяцев. «Ленин» успешно работал более 30 лет, на пять лет превысив расчетный срок эксплуатации. За эти годы ледокол прошел более 654 тысяч морских миль (во льдах 563,6 тысяч), осуществив проводку через льды Арктики 3741 судно. Ледокол «Ленин» стал первым судном, которое находилось на непрерывной вахте в Арктике на протяжении 13 месяцев.
10. После выведения из эксплуатации в 1990 году над ледоколом «Ленин» нависла угроза утилизации. Однако ветеранам его экипажа удалось добиться создания на его базе музея. В настоящее время первый в мире атомный ледокол «Ленин» находится на вечной стоянке в Мурманске, став одним из символов заполярного города.